Searchable abstracts of presentations at key conferences in endocrinology

ea0065oc4.1 | Thyroid | SFEBES2019

A high-throughput yellow fluorescent protein (YFP) cell-based screen identifies autophagy modulators to increase the effectiveness of radioiodine therapy

Read Martin , Baker Katie , Fletcher Alice , Thornton Caitlin , Alshahrani Mohammed , Nieto Hannah , Khan Rashida , Webster Jamie , Haggie Peter , Verkman Alan , Alderwick Luke , Boelaert Kristien , Smith Vicki , McCabe Christopher

New targeted drug strategies are urgently needed to improve radioiodine uptake and efficiently ablate thyroid cancer cells thereby minimising the risk of recurrent disease. High-throughput screening (HTS) offers a promising approach to identify new candidate drugs that will induce sodium iodide symporter (NIS) function to promote iodide uptake. However, significant progress has been limited by a lack of thyroid cell-based assays amenable to HTS. Here, we constructed a thyroid ...

ea0070oc5.4 | Thyroid | ECE2020

Drug repurposing identifies inhibitors of the proteostasis network to augment radioiodine uptake in combinatorial approaches targeting thyroid cancer

Read Martin , Brookes Katie , Fletcher Alice , Thornton Caitlin , Alshahrani Mohammed , Khan Rashida , Nieto Hannah , Adcock Holly , Webster Jamie , Cox Liam , Alderwick Luke , Boelaert Kristien , Smith Vicki , McCabe Christopher

New combinatorial drug strategies are urgently needed to improve radioiodine (RAI) uptake and efficiently ablate thyroid cancer cells, thereby reducing the risk of recurrent disease. Drug repurposing offers the promise of identifying already approved compounds capable of inducing sodium iodide symporter (NIS) function to enhance iodide uptake. However, a lack of thyroid cell-based assays amenable to high-throughput screening has limited progress. We utilised the mutated yellow...